尽管具有卷积神经网络(CNN)的图像超分辨率(SR)的突破性进步,但由于SR网络的计算复杂性很高,SR尚未享受无处不在的应用。量化是解决此问题的有前途方法之一。但是,现有的方法无法量化低于8位的位宽度的SR模型,由于固定的位宽度量化量的严重精度损失。在这项工作中,为了实现高平均比重减少,准确性损失较低,我们建议针对SR网络的新颖的内容感知动态量化(CADYQ)方法,该方法将最佳位置分配给本地区域和层,并根据输入的本地内容适应。图片。为此,引入了一个可训练的位选择器模块,以确定每一层和给定的本地图像补丁的适当位宽度和量化水平。该模块受量化灵敏度的控制,该量化通过使用贴片的图像梯度的平均幅度和层的输入特征的标准偏差来估计。拟议的量化管道已在各种SR网络上进行了测试,并对几个标准基准进行了广泛评估。计算复杂性和升高恢复精度的显着降低清楚地表明了SR提出的CADYQ框架的有效性。代码可从https://github.com/cheeun/cadyq获得。
translated by 谷歌翻译
近年来,通过开发大型的深层模型,图像修复任务已经见证了绩效的巨大提高。尽管表现出色,但深层模型要求的重量计算限制了图像恢复的应用。为了提高限制,需要减少网络的大小,同时保持准确性。最近,N:M结构化修剪似乎是使模型具有准确性约束的有效且实用的修剪方法之一。但是,它无法解释图像恢复网络不同层的不同计算复杂性和性能要求。为了进一步优化效率和恢复精度之间的权衡,我们提出了一种新型的修剪方法,该方法确定了每一层N:M结构稀疏性的修剪比。关于超分辨率和脱张任务的广泛实验结果证明了我们方法的功效,该方法的表现胜过以前的修剪方法。拟议方法的Pytorch实施将在https://github.com/junghunoh/sls_cvpr2r2022上公开获得。
translated by 谷歌翻译
过滤器修剪的目标是搜索不重要的过滤器以删除以便使卷积神经网络(CNNS)有效而不牺牲过程中的性能。挑战在于找到可以帮助确定每个过滤器关于神经网络的最终输出的重要或相关的信息的信息。在这项工作中,我们分享了我们的观察说,预先训练的CNN的批量标准化(BN)参数可用于估计激活输出的特征分布,而无需处理训练数据。在观察时,我们通过基于预先训练的CNN的BN参数评估每个滤波器的重要性来提出简单而有效的滤波修剪方法。 CiFar-10和Imagenet的实验结果表明,该方法可以在准确性下降和计算复杂性的计算复杂性和降低的折衷方面具有和不进行微调的卓越性能。
translated by 谷歌翻译
量化图像超分辨率的深卷积神经网络大大降低了它们的计算成本。然而,现有的作品既不患有4个或低位宽度的超低精度的严重性能下降,或者需要沉重的微调过程以恢复性能。据我们所知,这种对低精度的漏洞依赖于特征映射值的两个统计观察。首先,特征贴图值的分布每个通道和每个输入图像都变化显着变化。其次,特征映射具有可以主导量化错误的异常值。基于这些观察,我们提出了一种新颖的分布感知量化方案(DAQ),其促进了超低精度的准确训练量化。 DAQ的简单功能确定了具有低计算负担的特征图和权重的动态范围。此外,我们的方法通过计算每个通道的相对灵敏度来实现混合精度量化,而无需涉及任何培训过程。尽管如此,量化感知培训也适用于辅助性能增益。我们的新方法优于最近的培训甚至基于培训的量化方法,以超低精度为最先进的图像超分辨率网络。
translated by 谷歌翻译
Existing federated classification algorithms typically assume the local annotations at every client cover the same set of classes. In this paper, we aim to lift such an assumption and focus on a more general yet practical non-IID setting where every client can work on non-identical and even disjoint sets of classes (i.e., client-exclusive classes), and the clients have a common goal which is to build a global classification model to identify the union of these classes. Such heterogeneity in client class sets poses a new challenge: how to ensure different clients are operating in the same latent space so as to avoid the drift after aggregation? We observe that the classes can be described in natural languages (i.e., class names) and these names are typically safe to share with all parties. Thus, we formulate the classification problem as a matching process between data representations and class representations and break the classification model into a data encoder and a label encoder. We leverage the natural-language class names as the common ground to anchor the class representations in the label encoder. In each iteration, the label encoder updates the class representations and regulates the data representations through matching. We further use the updated class representations at each round to annotate data samples for locally-unaware classes according to similarity and distill knowledge to local models. Extensive experiments on four real-world datasets show that the proposed method can outperform various classical and state-of-the-art federated learning methods designed for learning with non-IID data.
translated by 谷歌翻译
This is paper for the smooth function approximation by neural networks (NN). Mathematical or physical functions can be replaced by NN models through regression. In this study, we get NNs that generate highly accurate and highly smooth function, which only comprised of a few weight parameters, through discussing a few topics about regression. First, we reinterpret inside of NNs for regression; consequently, we propose a new activation function--integrated sigmoid linear unit (ISLU). Then special charateristics of metadata for regression, which is different from other data like image or sound, is discussed for improving the performance of neural networks. Finally, the one of a simple hierarchical NN that generate models substituting mathematical function is presented, and the new batch concept ``meta-batch" which improves the performance of NN several times more is introduced. The new activation function, meta-batch method, features of numerical data, meta-augmentation with metaparameters, and a structure of NN generating a compact multi-layer perceptron(MLP) are essential in this study.
translated by 谷歌翻译
Detecting abrupt changes in data distribution is one of the most significant tasks in streaming data analysis. Although many unsupervised Change-Point Detection (CPD) methods have been proposed recently to identify those changes, they still suffer from missing subtle changes, poor scalability, or/and sensitive to noise points. To meet these challenges, we are the first to generalise the CPD problem as a special case of the Change-Interval Detection (CID) problem. Then we propose a CID method, named iCID, based on a recent Isolation Distributional Kernel (IDK). iCID identifies the change interval if there is a high dissimilarity score between two non-homogeneous temporal adjacent intervals. The data-dependent property and finite feature map of IDK enabled iCID to efficiently identify various types of change points in data streams with the tolerance of noise points. Moreover, the proposed online and offline versions of iCID have the ability to optimise key parameter settings. The effectiveness and efficiency of iCID have been systematically verified on both synthetic and real-world datasets.
translated by 谷歌翻译
Time-series anomaly detection is an important task and has been widely applied in the industry. Since manual data annotation is expensive and inefficient, most applications adopt unsupervised anomaly detection methods, but the results are usually sub-optimal and unsatisfactory to end customers. Weak supervision is a promising paradigm for obtaining considerable labels in a low-cost way, which enables the customers to label data by writing heuristic rules rather than annotating each instance individually. However, in the time-series domain, it is hard for people to write reasonable labeling functions as the time-series data is numerically continuous and difficult to be understood. In this paper, we propose a Label-Efficient Interactive Time-Series Anomaly Detection (LEIAD) system, which enables a user to improve the results of unsupervised anomaly detection by performing only a small amount of interactions with the system. To achieve this goal, the system integrates weak supervision and active learning collaboratively while generating labeling functions automatically using only a few labeled data. All of these techniques are complementary and can promote each other in a reinforced manner. We conduct experiments on three time-series anomaly detection datasets, demonstrating that the proposed system is superior to existing solutions in both weak supervision and active learning areas. Also, the system has been tested in a real scenario in industry to show its practicality.
translated by 谷歌翻译
In robotics and computer vision communities, extensive studies have been widely conducted regarding surveillance tasks, including human detection, tracking, and motion recognition with a camera. Additionally, deep learning algorithms are widely utilized in the aforementioned tasks as in other computer vision tasks. Existing public datasets are insufficient to develop learning-based methods that handle various surveillance for outdoor and extreme situations such as harsh weather and low illuminance conditions. Therefore, we introduce a new large-scale outdoor surveillance dataset named eXtremely large-scale Multi-modAl Sensor dataset (X-MAS) containing more than 500,000 image pairs and the first-person view data annotated by well-trained annotators. Moreover, a single pair contains multi-modal data (e.g. an IR image, an RGB image, a thermal image, a depth image, and a LiDAR scan). This is the first large-scale first-person view outdoor multi-modal dataset focusing on surveillance tasks to the best of our knowledge. We present an overview of the proposed dataset with statistics and present methods of exploiting our dataset with deep learning-based algorithms. The latest information on the dataset and our study are available at https://github.com/lge-robot-navi, and the dataset will be available for download through a server.
translated by 谷歌翻译
Deep learning has been widely used for protein engineering. However, it is limited by the lack of sufficient experimental data to train an accurate model for predicting the functional fitness of high-order mutants. Here, we develop SESNet, a supervised deep-learning model to predict the fitness for protein mutants by leveraging both sequence and structure information, and exploiting attention mechanism. Our model integrates local evolutionary context from homologous sequences, the global evolutionary context encoding rich semantic from the universal protein sequence space and the structure information accounting for the microenvironment around each residue in a protein. We show that SESNet outperforms state-of-the-art models for predicting the sequence-function relationship on 26 deep mutational scanning datasets. More importantly, we propose a data augmentation strategy by leveraging the data from unsupervised models to pre-train our model. After that, our model can achieve strikingly high accuracy in prediction of the fitness of protein mutants, especially for the higher order variants (> 4 mutation sites), when finetuned by using only a small number of experimental mutation data (<50). The strategy proposed is of great practical value as the required experimental effort, i.e., producing a few tens of experimental mutation data on a given protein, is generally affordable by an ordinary biochemical group and can be applied on almost any protein.
translated by 谷歌翻译